Исследование информационных характеристик учебного текста методами многомерного статистического анализа [ 2008 ]

В статье с помощью методов многомерного статистического анализа (кластерный и факторный анализы, методы корреляционных плеяд и вроцлавской таксономии, многомерное шкалирование) изучены информационные характеристики учебного текста по философии и экономической теории для высшей школы. В частности, выделены группы близких параметров текста и на основе информационной меры Кульбака отобраны признаки, которые обладают наибольшей информативностью среди признаков своей группы.С помощью дискриминантного анализа выделены основные признаки, влияющие на усвоение учебного текста (средняя длина абзаца в словах, средняя длина абзаца в буквах, процент слов длиной 11 букв и больше, процент слов длиной 13 букв и больше), вычислены дискриминантные функции, на основе которых появляется возможность отнести каждый объект (текст), в том числе и неизвестный, к одной из известных групп (легкий-трудный). Полученные расчёты будут использованы для создания программного обеспечения, автоматизирующего оценку понятности (читабельности) учебного материала для высшей школы.

Жанр: компьютеры и интернет, образовательная литература: прочее, наука и образование, компьютеры:

Автор(ы): Марина Михайловна Невдах

Информация
Нравится 0 Не нравится 0
Прочитали 0 В избранном 0
Голосов 0

Исследование информационных характеристик учебного текста методами многомерного статистического анализа <small>[ 2008 ]</small>

Рейтинг 0
Ваша реакция

Только авторизованные пользователи могут участвовать в рейтингах, делать заметки и добавлять в избранное.

Зарегистрироваться

Авторизоваться

Nickname